Knowledge

For how long do I have to aim a laser at the moon to see a dot?

There are two possible questions here. The first is simply how long would it take for a laser to travel to the moon and back.


The moon is around 384,000 km away. The speed of light is 299,792,458 m/s. The journey is round trip, so:


However, if the question really is about seeing the dot – you won’t. Ever.

Beams of light diverge. Take a flashlight (torch) for example. Why is it that if you are 20 meters from a wall the light will illuminate it, but if you are 40 meters from that wall, the light won’t illuminate it?

What’s happening here? Is something stopping the light from traveling that distance? No, the light is traveling unimpeded, 40 meters is nothing for a photon. But the beam of light gets larger and larger with distance. So, the extremely dense cross section of photons at the lens of the flashlight is very bright, but as the beam gets wider, those photons are distributed over greater area. The light density gets less and the beam gets dimmer.


Very expensive lasers are designed to minimize this beam spreading, called divergence – but they can’t stop it. And we do reflect lasers off the moon. Well, more accurately, we reflect lasers off mirrors that the Apollo astronauts left on the moon.


Although the moon looks bright to us, that’s just because the sun is radiating it with so much light. The moon is gray like charcoal. It only reflects about 7% of the visible light that hits it. So, even the best lasers combined with the best telescopes aren’t going to be effective at reflecting visible light off of the surface. But those mirrors are highly reflective.

Even so, very few of the photons from the lasers aimed at those mirrors actually make it back to the telescope. There is a project called APOLLO (Apache Point Observatory Lunar Laser-ranging Operation) that fires laser pulses at those mirrors and measures the returned signal to calculate extremely precisely the distance to the moon. They use a powerful laser and yet only 1.7 in 1E17 of the photons from their laser are sensed upon return.

That’s 1.7 in 100,000,000,000,000,000 photons. With their system, that means the returning signal consists of 5-10 photons. A giant 3.5 meter telescope can only detect 5-10 photons. Your eye isn’t going to have such luck.

Here’s a picture of APOLLO shining its laser on the moon.

Related Posts

Why was the aircraft carrier USS America CV-66 almost impossible to sink when it was used as a test target in 2005 while battleships with much thicker armor were routinely sunk in combat in WW2 using now-obsolete weapons?

The USS America is the only super carrier ever sunk, either on purpose or in combat. It took four weeks and they ended up having to scuttle her…

Are there dead bodies in Titanic?

There are some preserved bodies inside the bowels of the wreckage. The engineers that were trapped in the bottom are believed to had been preserved as they’re buried…

Can China destroy the American Navy fleet if they get into Chinese waters?

China can destroy any fleet anywhere in the world. Not only an American one. Not only near and around China, but anywhere. The idea that China has the…

Is it true that USS Eisenhower (docked for repairs in Souda Bay) hit and severely damaged by multiple Houthi ballistic missiles?

Yes, the Eisenhower was sunk. Fortunately close NATO ally the United Kingdom stepped in to help – you see the Argentines managed to sink HMS Invincible three times…

If a planet is 500 light years away, does that mean that even if you traveled at the speed of light, it would still take you 500 years to get there?

In Special Relativity, we are concerned with different frames and how they compare with each other. So the short answer is you could do it in under 500…

How did the US transport hundreds of fighter planes to Europe during WWII? Did they have the range to fly that far?

In 1942, as the British readied airfields for them, B-17 bombers and P-38 twin engine fighters would self deploy from the US to England. Neither aircraft had the…

error: Content is protected !!