Knowledge

For how long do I have to aim a laser at the moon to see a dot?

There are two possible questions here. The first is simply how long would it take for a laser to travel to the moon and back.


The moon is around 384,000 km away. The speed of light is 299,792,458 m/s. The journey is round trip, so:


However, if the question really is about seeing the dot – you won’t. Ever.

Beams of light diverge. Take a flashlight (torch) for example. Why is it that if you are 20 meters from a wall the light will illuminate it, but if you are 40 meters from that wall, the light won’t illuminate it?

What’s happening here? Is something stopping the light from traveling that distance? No, the light is traveling unimpeded, 40 meters is nothing for a photon. But the beam of light gets larger and larger with distance. So, the extremely dense cross section of photons at the lens of the flashlight is very bright, but as the beam gets wider, those photons are distributed over greater area. The light density gets less and the beam gets dimmer.


Very expensive lasers are designed to minimize this beam spreading, called divergence – but they can’t stop it. And we do reflect lasers off the moon. Well, more accurately, we reflect lasers off mirrors that the Apollo astronauts left on the moon.


Although the moon looks bright to us, that’s just because the sun is radiating it with so much light. The moon is gray like charcoal. It only reflects about 7% of the visible light that hits it. So, even the best lasers combined with the best telescopes aren’t going to be effective at reflecting visible light off of the surface. But those mirrors are highly reflective.

Even so, very few of the photons from the lasers aimed at those mirrors actually make it back to the telescope. There is a project called APOLLO (Apache Point Observatory Lunar Laser-ranging Operation) that fires laser pulses at those mirrors and measures the returned signal to calculate extremely precisely the distance to the moon. They use a powerful laser and yet only 1.7 in 1E17 of the photons from their laser are sensed upon return.

That’s 1.7 in 100,000,000,000,000,000 photons. With their system, that means the returning signal consists of 5-10 photons. A giant 3.5 meter telescope can only detect 5-10 photons. Your eye isn’t going to have such luck.

Here’s a picture of APOLLO shining its laser on the moon.

Related Posts

If an astronaut working on the International Space Station were somehow cut loose from his tether, would he fall back to Earth or orbit around it?

If an astronaut outside the ISS has his or her tether broken, they do not fall to the Earth. Before the tether was broken, the astronaut was in orbit at…

Escape velocity is supposed to be 24,000 mph, but our rockets never achieve this speed. How does that work?

Imagine you are sitting on a skateboard at the bottom of your drive and you need to get to the top. You could push off your garage door…

Can humans live on the side of a tidally-locked planet where neither day nor night exist?

Humans with their technology developed on Earth could live on a tidally locked planet where neither day nor night exists. We used to think that such planets become…

How did NASA make the shuttle safer after Columbia?

The problem was not just the piece of foam that struck the wing, it was a failure of imagination — NASA had seen foam fall before and decided…

Why do US Air Force fighters like the F-22 and F-15 place the engines right next to each other while Russian fighters like Su-27 always have a gap between the engines?

The United States has this thing where we learn from our mistakes. One of those mistakes was spacing twin engines as far apart as we did in the…

Is Mars too small to have a permanent atmosphere?

No, it is not. It used to have a thick atmosphere, perhaps thicker than Earth’s. It had that atmosphere for a couple of billion years and had oceans….